
THE UNIVERSITY OF TEESSIDE

SCHOOL OF COMPUTING

MIDDLESBROUGH

CLEVELAND TS1 3BA

VOCAL INTERFACE TO A COMPUTER ANIMATION SYSTEM

BSc (Honours) Computer Studies

March 2004

Julien Loiseaux

Supervisor: Prof. Marc Cavazza

Second Reader: T. P. Davison

Abstract

The aim of this project is to develop an implemented prototype of a vocal interface

to a computer animation system.

The main purpose of building such an interface is to improve the interaction be-

tween human beings and artificial actors using speech recognition.

This interface is embedded in the Interactive Story Telling System, used by the

university, which is based on the Unreal TMgame 1 engine.

An analysis of the Interactive Story Telling System especially at the speech recog-

nition and Natural Language Processing layers is provided.

A research on both Speech Recognition systems and Natural Language Processing

is conducted to find out what is the best way to get the best performance.

We look especially at the different modes of speech recognition and the accuracy

of speech recognition systems.

Regarding the Natural Language Processing approach, we look at a brief history

of Natural Language Processing in which several concepts used to build past sys-

tems is reviewed, before introducing its main concepts and its embedding in the

interactive storytelling system.

A corpus (set of sentences) of 300 sentences has been implemented using the

c©BabelTech lexicon editor.

However three versions of the corpus were implemented. The first one is syntactic

based; the second is thematic based , which gave low recognition results because

of their complexity. The third and final version is based on plain text and alter-

natives.

To increase the flexibility of the system an extension of those sentences is provided

in the Corpus using alternatives.

The Natural Language Processing is dealt using templates implemented using the

Ear SDK from c©BabelTech.

Templates are based on speech acts, which aim at associating a list of keywords

1Epic Games

2

to a specific meaning.

The first version of the templates is containing all the themes and their relevant

speech acts.

A first working prototype based on six relevant themes is provided reaching the

performances expected within the given time.

Tests have been carried out at all the stages of the project using applications pro-

vided by Mr. Steven Mead and Mr. Fred Charles.

A review of Testing techniques and results has been provided.

3

Acknowledgements

First, I would like to express my gratitude to my supervisor, Prof. Marc Cavazza,

whose expertise, understanding, and patience helped me to go through this project.

I would like also to thank Mr. Fred Charles and Mr. Steven Mead for the as-

sistance they provided at all levels of the project.

4

Contents

Abstract 2

Acknowledgements 4

1 Introduction 8

1.1 Speech recognition . 8

1.2 Natural Language Processing . 8

1.3 Interactive Story Telling System overview 9

1.3.1 The system . 9

1.3.2 The speech recognition layer 9

1.3.3 The natural language processing layer 10

1.4 Aims and contributions . 10

1.5 The structure of this report . 10

2 Methodology 11

3 Research 13

3.1 Speech Recognition System . 13

3.1.1 Mode . 13

3.1.2 Existing systems . 14

3.1.3 Accuracy . 14

3.2 Natural Language Processing approach 15

3.2.1 Purpose . 15

3.2.2 History . 15

3.2.3 Natural Language Processing concepts 17

3.2.4 Natural Language Processing in an Interactive Storytelling

system . 18

3.3 Outcome . 20

5

4 Building the corpus 21

4.1 Aim of the Corpus . 21

4.2 The tool . 21

4.3 Themes . 22

4.4 Grammar classification and rules 24

4.4.1 Syntactic Based Grammar 24

4.4.2 Thematic Based Grammar 26

4.5 Final version of the Corpus . 28

5 Embedding in Unreal 30

5.1 The aim of the templates . 30

5.2 Implementing the templates . 30

5.2.1 The structure . 30

5.2.2 First version of the templates and problems raised 33

5.2.3 Design of the templates . 33

6 Testing and refinement 36

6.1 Testing the Corpus . 36

6.1.1 Efficiency testing techniques 36

6.1.2 Testing results . 36

6.2 Testing the templates . 37

6.2.1 Efficiency testing techniques 37

6.2.2 Testing results . 38

6.3 Outcome . 39

7 Conclusion 40

Bibliography 42

A Project specification 44

B BabelTech Lexicon Editor screenshot 46

C Excerpt of the syntactic based Corpus 47

C.1 Grammar Definition . 47

C.2 Some sentences examples . 50

D FSG definition Chart (Complex Corpus) 52

6

E Thematic based corpus excerpt 56

E.1 Some grammar rules definition examples 56

E.2 Specific theme grammar definition 59

E.3 Some sentences examples from the Threat Theme 59

F Corpus final version excerpt 61

F.1 Classes Definitions . 61

F.2 Denial Theme . 62

G Templates first version source code Excerpt 66

G.1 Templates First Version Definition Example 66

G.2 Sentences Examples : Complains, Incredulity, Advice, Challenge,

Misunderstanding Themes . 68

H Templates source code excerpt 71

H.1 Templates Definition Example : Denials and Threats 71

H.2 Sentences Examples : Threats and Denials 75

I Templates definition charts 81

J Talk to unreal application screenshot 86

7

Chapter 1

Introduction

To start with, Speech is one of the many ways a human being can interact with

another one. The aim of speech recognition is to provide an interface to allow a

human being to interact with a machine using speech.

1.1 Speech recognition

Speech recognition can be defined as

“the process of converting an acoustic signal, captured by a microphone

or a telephone, to a set of words.”

(V. Zue and R. A. Cole. Spoken language input)[16].

Once recognized, the words or set of words recognized can be used as input to

any number of different applications. The recognized words can be used to control

computers or other machines, for data entry and for text processing.

1.2 Natural Language Processing

Natural Language Processing (NLP) is intending to analyse and represent natu-

rally occurring texts to achieve human-like language processing:

“NLP is a range of computational techniques for analysing and rep-

resenting naturally occurring texts at one or more levels of linguistic

analysis for the purpose of achieving human-like language processing

for knowledge intensive applications.”

Woojin Paik. Natural language processing[13].

8

CHAPTER 1. INTRODUCTION 9

1.3 Interactive Story Telling System overview

1.3.1 The system

The aim of the Interactive Story Telling System (ISS) is to create dynamic narra-

tives with which the user can interact. The system is divided into three layers, the

user layer, the character layer and the 3D environment layer as described in the

figure 1.1: The user layer will be the most exploited, this layer is made up itself

into 2 layers: the speech recognition layer and the Natural Language Processing

(NLP) layer [11].

Figure 1.1: Character-based Interactive Storytelling[3]

1.3.2 The speech recognition layer

The speech recognition layer is providing tools to develop a Finite State Grammar

(FSG), which is the set of sentences (corpus) to be recognized by the automatic

speech recognition (ASR) system.

CHAPTER 1. INTRODUCTION 10

1.3.3 The natural language processing layer

This layer aims at attempting to map the output from the speech recognition layer

and carries out the actual speech recognition act [11]. It is based on templates that

contain all the sentences to be validated from the ear system and all the speech

acts of the scenario.

1.4 Aims and contributions

The main aim of this project is to build a prototype of a vocal interface with an

efficient speech recognition accuracy within an interactive storytelling system. To

do so, here are the contributions:

• Analysing the interactive storytelling system.

• Finding ways to improve the accuracy and the performance of the vocal

interface by:

• Studying and understanding the basics of speech recognition and nat-

ural language processing principles.

• Having a look at existing speech recognition systems.

• Implementing those concepts in the system.

• Producing a Corpus with about 300 sentences which fix to the plot used by

the Interactive Storytelling System by:

• Doing a Review of James Bond Movies Villains Sentences

• Extending those sentences to make the system more flexible

Another goal is to propose a Methodology which can be re-used in other Speech

Recognition systems by summarizing the different steps which lead to an efficient

system.

1.5 The structure of this report

In this report, after dealing with the methodology and research, we will have a

look on how to build a corpus, the embedding of the system in UnrealTM1 to

finally talk about the testing and refinement of the product.

1Epic Games

Chapter 2

Methodology

Constraint: As a part of a scientific publication this project was managed by a

non-negotiable main deadline on mid April.

A first version of the Corpus had to be handed in on mid December.

A first beta version of the system had to be operational on the beginning of March.

The project development has been split into several steps.

The first was to do some research on speech recognition and natural language pro-

cessing to see how the problem can be solved and if people have already solved

this kind of problem.

By doing the research, a learning of the development tools in which the system

has to be implemented was done as well.

Regarding the design an analysis on how we can deal with the problem was done,

and different ways to solve the problem have been proposed.

The three main steps was to find a way to build the corpus first, next implement

the templates and finally mix them together to have the best efficiency.

Although a testing and refinement phase is necessary at the end of the project,

a lot of tests were done on going the project. The Figure 2.1 is illustrating the

different methodology steps.

11

CHAPTER 2. METHODOLOGY 12

Figure 2.1: Methodology Chart

Chapter 3

Research

3.1 Speech Recognition System

In this part, we will focus on speech recognition systems in order to find out a

system that best fix with the project.

3.1.1 Mode

There are several modes in which a speech recognition system can be used [7]:

• Dependent systems: In this system, the system has to be trained and ac-

customed to the voice of the user, recording sessions by the user is necessary.

This system cannot be used in our case because it is not always the same

user who is using the system.

• Independent systems: Those systems do not require a training phase,

which fix with the aim of the project. However we are losing a little bit of

accuracy.

• Isolated Word Recognition: In this recognition mode, each word is sur-

rounded by a silence, the system is not required to know the beginning and

the end of each word, each word is compared to a list of word models, it is

the less greedy system in term of CPU requirement.

• Continuous Speech Recognition: Contrary to the previous mode, this

mode requires more CPU and is user-friendlier. It is based on the assumption

that the system is able to recognize a sequence of word in a sentence. We

are losing in recognition accuracy but it is user-friendlier.

13

CHAPTER 3. RESEARCH 14

• Keyword Spotting: This is the more interesting speech recognition mode.

Indeed it is a mix between continuous and isolated speech recognition and

it improves the accuracy. Those systems are able to recognize words and

group of words corresponding to a particular command or speech acts. For

example in a Video Renting Machine, if we assume that the user asks for

western movies, the user has many different ways to ask his question, it

could be: “Show me the list of western movies” or “Can you please give me

the list of movies with cowboys”. The words “western” and “cowboys” are

corresponding to a specified action which can be in this example to display

the list of western movies. In our example we can consider the keyword

spotting as “multiple” since a list of several keywords stands for the same

meaning.

3.1.2 Existing systems

Speech recognition is starting to have a lot of applications using a dependent

recognition system. For example, speech to text software used for pc dictation or

to control pc operating systems. Speech recognition is also used in telephony and

calls centres.

3.1.3 Accuracy

Nowadays, there is no speech recognition system that has 100 per cent accuracy.

The accuracy of the speech recognition system that we are using is relying on those

statements:

• Vocabulary size: The size of the vocabulary is a really important point in

speech recognition, the more the size of the vocabulary is important the more

the user can talk in different manner. However, if there are too many words

the system is more led to make errors. If two words of different meanings

have close pronunciations it can raise problem in the system. This means

that we need to identify which vocabulary is more likely to be used by the

user.

• Language Models: The way we deal with syntactic and semantic con-

straints is an important feature for the accuracy of the system. How the

words and the set of words are split within the speech acts is important.

Other accuracy improvement features will be dealt further in this report.

CHAPTER 3. RESEARCH 15

3.2 Natural Language Processing approach

3.2.1 Purpose

Natural Language Processing (NLP) is intending to analyse and represent natu-

rally occurring texts to achieve human-like language processing [4]. In other words,

NLP helps to define relevant logical grammar rules considering semantic, syntac-

tic and lexical features. Natural language is used in a lot of human computer

interaction systems.

3.2.2 History

This part is mainly based on the The Handbook of artificial intelligence by Avron

Barr and Edward A. Feigenbaum [1].

The concept was introduced by Dr. Alan Turing in 1950[9], a British mathemati-

cian by proposing a test for intelligence. The aim is to answer to the question

“Can this machine trick the human to think that its human”, the machine used

to do this test was a natural language program which attempted to converse with

a human subject. The subject is placed in a room and is not aware whether he is

talking to a human or a computer. The communication was done by typing on a

terminal.

The first researches done in Natural Language Processing, during the middle of

the 20th century [1], were about finding a way to resolve worldwide translation

problems. This research called machine translation attempted to simulate the

functions of a human translator using a computer. It was based on a search in a

bilingual dictionary by finding an equivalent word in the output language. After

processing sentences using this way, this system tried to put the output strings in

the output language’s word order. Problems occurred and this project was aban-

doned.

In the 1960s, researchers tried to find new ways to deal with the machine transla-

tion problem by viewing the human language as a involving knowledge of different

kinds: The structure of the sentence, the meaning of the words, the rules of con-

versation and etcetera. The goal was to make a computer performed as a human,

by modelling the human language processing using knowledge storing.

The early Natural language software was based on processing the language only

in a specific domain. The main programs were Green’s BASEBALL, Lindsay’s

SAD-SAM, Bobrow’s STUDENT, and Weizenbaum’s ELIZA.

Here is an example of an early application of NLP: ELIZA (Weizenbaum, 1966).

CHAPTER 3. RESEARCH 16

ELIZA aimed at enabling the user to discuss with the machine. The user played

the role of a patient and the machine a psychotherapist.

Sample Dialogue with Eliza[10] :

...

USER: Men are all alike.

ELIZA: In what way?

USER: They’re always bugging us about something or other.

ELIZA: Can you think of a specific example?

USER: Well, my boyfriend made me come here.

ELIZA: Your boyfriend made you come here.

USER: He says I’m depressed much of the time.

ELIZA: I am sorry to hear you are depressed.

USER: It’s true, I am unhappy.

ELIZA: Do you think coming here will help you not to be unhappy?

USER: I need some help; that much seems certain.

ELIZA: What would it mean to you if you got some help?

USER: Perhaps I could learn to get along with my mother.

ELIZA: Tell me more about your family.

...

ELIZA was based upon predeclared keywords and pattern matching that gave in-

formation about the objects and the relationships between the latest. The results

of such a system were impressive because of a limited discourse.

In the 70s Knowledge based Natural Language systems were introduced by deal-

ing with both semantics and syntactic aspects of Natural Language processing.

Those systems are most based on the theory of generative grammar introduced by

Chomsky (1957). The idea was to parse the grammar of the sentences to determine

their meaning in order to generate an appropriate response. By determining the

functions of the words, the system builds a data structure that attempts to get the

meaning of the sentence. But the practical use of grammar in natural language

systems is complex and based upon the definition of the parser.

In order to be able to answer about the sample of rocks brought back from the

moon, William Wood’s LUNAR program were one of the first NL program which

attempts to deal with the problems of English grammar using an augmented net-

work parser. By integrating syntactic and semantic analysis with a body of a

world-limited domain, those kinds of systems dealt with more complex aspects of

language and discourse than previous programs.

CHAPTER 3. RESEARCH 17

The idea was to represent knowledge in a procedural way within the system. Se-

mantics were integrated as programs in a computer language, this is called, proce-

dural representations, in other words, it aimed at associating the definition of the

words as actions executed by program fragments.

Semantic networks, which aim at linking parts of world knowledge together through

semantics, have also been used in a lot of Natural language program (MARGIE

and SAM (Schank 1975; Schank and Abelson 1977)).

During the 1980s empiricism and finite state models went back from the 50s on

account of that the IBM Thomas J. Watson research centre introduced the rise of

probabilistic models of speech recognition.

In 1994, the British national corpus was made available[12]. Now, the World Wide

Web is used as a huge hyper linked corpus. Currently a lot of research is done

in Natural Languages and due to the improvement of the computer performance

some areas starts to be commercial. The current approaches in Natural language

processing are often a combination of rule, statistical and corpus based methods.

3.2.3 Natural Language Processing concepts

The following concepts are key points for the analysis phase of the project [14]:

• Morphology:

It is the way the words are constructed (prefixes and suffixes). A system

has to differentiate for example the plural from the singular (e.g. flower /

flowers).

• Syntax:

It is how the relationships between the words are structured.

The system has to be able to know the order of the words in a sentence.

For example without considering syntax, a system can output “I am cannot

be serious”. Although syntax is not the meaning, word order is important

because the sequence of words helps to determine their functions.

“Syntax can be defined as the arrangement of patterning of words”

George W. Smith, Computer and human language[15].

• Semantics:

It stands for the meanings of words, sequence of words and expressions. In

the sentence “How would I know Mr. Bond?”, the system has to be able to

CHAPTER 3. RESEARCH 18

associate expressions to a meaning, in this example it could be the sequence

“How would I know” associates with the meaning denial and the expression

Mr. Bond associates with the meaning actor.

“Semantics constructs are usually more specific than syntactic

rules and often resolve syntactic ambiguities.”

George W. Smith, Computer and human language[15].

.

• Discourse:

It embodies the relationships across different sentences or thoughts (contex-

tual effects).

• Pragmatic:

It is the studies of how language is used to achieve specific goals.

• Ambiguity[10]:

Ambiguity is an important issue in NLP; the issue is that a sequence of words

can have different meanings. The expression “of course” can have different

meanings it can stands for “yes, I agree” or ironically “no I disagree”. Those

problems can be resolved by using speech acts that allow the system to deal

with the consequences of the speech. But we have to bear in mind that speech

acts can be in some cases ambiguous; indeed one phrase can correspond to

several speech acts[15].

3.2.4 Natural Language Processing in an Interactive Sto-

rytelling system

NLP is an important feature in an interactive storytelling system. This part

is mainly based on interactive storytelling publications by Marc Cavazza, Fred

Charles, and Steven J. Mead.

“Interactive storytelling can be seen as a natural extension of the im-

plementation of autonomous actors. As virtual characters become

more intelligent, the action can increasingly rely on their automatic

behaviour, generating a larger diversity of story than with current au-

thoring methods. This dynamic computation of the action also makes

CHAPTER 3. RESEARCH 19

possible various forms of user intervention, whose consequences on the

story can then be propagated, as the plot is re-computed.”

Marc Cavazza, Fred Charles, and Steven J. Mead, Interactive Storytelling:

From Computer Games to Interactive Stories[5].

Natural language in interactive storytelling is used as a paradigm for influence of

plans that are used to drive the behaviour of characters in the story[11]. The main

point is that the system aims at influencing the behaviour of characters rather than

instructed them like in a conventional natural language system.

The user is interfering with characters to advice them. A planning system is used

to drive the characters and modify the story, which is generated from the interac-

tion between the character plans. This planning system is mainly character-based

and represents each character role in the story. To do so, the system is using

a knowledge representation called Hierarchical Task Networks (HTNs) which de-

scribes the behaviour of each character in the story.

The system is supporting re-planning and interleaving of planning and execution

enabling an agent to re-plan new solutions as the situation is altered due to other

agents or user interaction. Indeed, an agent task network can be directly searched

using a real-time variant of the graph-search algorithm AO*[4]. Agent plans are

generated as the semantics of the Natural Language instructions.

There are two main interactions within the system; one is physical interaction

the other natural language interaction. Physical interaction is about allowing the

user to drop or pick up resources, which modify the plot of the story. Using Natural

Language interaction, the user is able to interfere with the story and modify char-

acters plans. Although the user is considering as an active spectator by influencing

and assist the development of the story, conventional use of speech recognition as

character controlling (e.g. ordering a character to move from a place to one an-

other) is not considered.

As briefly specified in the introduction the system has two layers the speech recog-

nition layer the natural language processing layer. As the input can modify several

stages of the planning process, the communicative nature of the input has to be

identified. To do so, speech acts are used to categorize the Natural language input.

The semantic of the speech acts is compared to the sub-goal node in the agent’s

plan.

The natural language processing layer aims at attempting to map the output from

CHAPTER 3. RESEARCH 20

the speech recognition layer and perform speech act recognition which influences

the HTNs.

The system will attempt to identify the surface form of the advice then it will

take the semantic information to produce a speech act. The system has to identify

the context in which the utterance is presented and interpret it accordingly. The

interpretation of a speech act is not only modifying the plot of the story but it is

also depending on the current plan of the story.

3.3 Outcome

Here is a list of the main statements resulting from the research, that has to be

considered for the implementation:

• Speech Recognition system:

The speech recognition system will be based on the keyword spotting prin-

ciples (See 3.1.1).

• Accuracy:

The corpus has to have a large set of flexible sentences and a high specific

vocabulary(See 3.1.3).

• Grammar Validation:

As proposed in the William Woods LUNAR program (See 3.2.2), a way to

validate the basic english syntactic rules of the sentences can be attempted.

• Discourse:

The discourse (See 3.2.3) has to be considered, it will be managed by re-

grouping sentences by themes.

• Speech Acts:

The Natural Language Processing of the Interactive Storytelling system will

be managed using speech acts (See 3.2.4) by considering ambiguities and

NLP concepts(See 3.2.3).

Chapter 4

Building the corpus

4.1 Aim of the Corpus

A corpus in speech recognition is a set of sentences; it aims at referencing all the

sentences that the user can say. So, for one sentence we have to consider other

ways to say the sentence to make the system flexible. Three versions of the corpus

were implemented. The first one is syntactic based, the second is thematic based.

The third and final version is based on plain text and alternatives.

4.2 The tool

To build the corpus a finite state grammar development tool “ c©BabelTech lex

editor” is used. It is based on a mark-up language, which allows us to build

a speech structure. It has some interesting features to be considered such as,

alternatives and optional structuring:

• Classification: The mark-up language allows a classification of the different

utterances classes: Example: <noun> <verb> <actor> and etcetera.

• Alternatives: The tag alt(”word1” ”word2”)alt aims at providing alter-

natives for a given meaning or a given grammatical type. For example: alt

(”james” ”mister bond” ”james bond”)alt are the different ways to say

James Bond.

• Sequence: A sequence helps at building sentences by associating different

utterances or classes. Example: seq(”hello” ”my” ”name” ”is” <actor>)seq

will produce for instance the sentence “hello my name is James Bond”.

21

CHAPTER 4. BUILDING THE CORPUS 22

• Optional: The optional tag aims at defining some part of the sentences

that can be said or not. Example: seq(opt (”hello”)opt ”my” ”name” ”is”

<actor>)seq will output the sentence “hello my name is James Bond”, or

simply “my name is James Bond”.

Those features improve the flexibility of the system. This example describes the

power of those features:

alt(“hello” “good morning” “hi”)alt opt(<ACTOR>)opt

where <ACTOR> is a class which contains all the names of the actors who are in

the scenario and the different possibility to name them (James bond, mister bond,

James, goldfinger and etcetera).

This simple line of code allows the user to say hello in different ways:

hello, good morning, Hi, hello bond, hi bond, good morning, bond, hello goldfinger

and etcetera.

A screenshot of the c©BabelTech lex editor is available in appendix B.

4.3 Themes

In the Interactive Story Telling application example, the user plays the role of the

villain in a short James Bond movie scenario. Thus, the first thing to do is to

collect a suitable number of James Bond villain replies (about 300), and classify

them by theme.

Obviously each of those replies has been extended to allow the user to say the sen-

tences in different ways in the purpose of making the system more flexible. After

a review of several James Bond movies dialogues, in the final version sentences

have been classified into twenty main themes as follow:

• Denials:

This theme is regrouping all the sentences that deals with a denial in which

in which the villain refuses to tell an information to James Bond or ironically

refuses to tell him the answer.

• Introduction:

This theme is used to introduce actors to James Bond.

• Threat:

This theme is a series of threating replies toward James Bond.

CHAPTER 4. BUILDING THE CORPUS 23

• Challenge:

The sentences contained in this theme aims at challenging James Bond.

• Agreements Answer:

This theme includes all the possibility that the user can say to agree with

Mr. Bond.

• Disagreements Answer:

This theme includes all the possibility that the user can say to disagree with

Mr. Bond.

• Greetings hi:

This theme includes all the possibility that the user can say to welcome Mr.

Bond.

• Greetings bye:

All the ways to say bye to Mr. Bond.

• Complain:

This theme contains several sentences which express a complain toward Mr.

Bond.

• Offensive:

This theme aims at offending Bond.

• Disagreement action:

When the user wants to stop Mr. Bond from doing an action.

• Agreement actions:

When the user wants Mr. Bond to carry on his action.

• Drinks questions:

Allow the user to propose a drink to Mr. Bond.

• Command action Threat:

Allow the user to command Mr. Bond by threatening him, sentences like

”put your hands on you head” and etcetera.

• Misunderstanding:

When the user does not understand what Mr. Bond is talking about, he can

ask him to repeat.

CHAPTER 4. BUILDING THE CORPUS 24

• Thanks:

All the way to say thanks to an actor.

• Compliment:

Several Compliments

• Incredulity:

When the user does not trust an actor.

• Advice:

When the user wants to advise Mr. Bond.

• Romance:

This theme contains several romantic sentences if the villain is a girl.

4.4 Grammar classification and rules

4.4.1 Syntactic Based Grammar

The first idea was to define syntactic rules in the corpus to parse most of the

sentences in the future. Basic English grammar rules have been reviewed and an

implemented version has been produced.

The structure of this corpus is based on splitting grammar entities into phrasal

groups. Here are basic grammar entities: subjects, verbs, nouns, pronouns, prepo-

sition, quantifier, auxiliary, adjective and etcetera.

Once those entities defined, we group them into phrasal groups as follow:

Nominal Compliment, Nominal Phrase, Prepositional Phrase, Verbal Phrase and

etcetera. For example the sentence “I never fail mr bond” is made of a verbal

phrase (VP) and a nominal phrase (NP):

seq(

<VP>

<NC>

)seq

A verbal phrase is defined as being:

<VP>=

seq(

opt(<ADVERB>)opt

opt(<SUBJECT>)opt

opt(<ADVERB>)opt

CHAPTER 4. BUILDING THE CORPUS 25

opt(<AUXILIARY>)opt

<VERB>)seq;

Each of those classes is containing a list of relevant words, for example, the class

verb is containing a list of verbs:

<VERB> =

alt(

have

hope

fail

admiring

dreaming

be

expect

die

choose

introduce

let

allow

see

buy

)alt;

A nominal complement can be :

<NC>=

seq(

rep(

opt(<ADJECTIVE>)opt

)rep

<NOUN>

rep(

opt(<NOUN>)opt

)rep

opt(<NAME>)opt

)seq

Other examples are available in Appendix C1. The Figure 4.1 is describing the

structure of an example of syntactic grammar.

1All the full versions of the sources are available on the attached CD

CHAPTER 4. BUILDING THE CORPUS 26

Figure 4.1: Syntatic grammar rules

It has been agreed that the idea of building an English Grammar is too complex

for such a specific project. It involves too much rules which force to specify too

many optional statements that deeply deteriorate the speech recognition perfor-

mance.

The other problem raised is semantics because, although syntax is determining

the function of the words within a sentence (3.2.3), the semantics are not fully

described. However simple rules should not to be ignored, they are useful in some

repeat pattern cases.

4.4.2 Thematic Based Grammar

The thematic based grammar is the structure that attempts to build the corpus

based on syntactic basic rules but by integrating semantic classification. The idea

was to categorize the corpus in themes to do a pre-parsing before validating the

speech acts by the templates.

All the grammar entities are split into categories. Those categories are themselves

split into sub categories. It reminds an object oriented class pattern on account

of there are hierarchical links between categories.

CHAPTER 4. BUILDING THE CORPUS 27

A diagram describing theses classes is available in Appendix D.

There are two main part in the design of this corpus:

The first one defines the common grammar entities for all the sentences and the

second part is thematic based containing the specific entities for each theme. For

example, the common category “<VERB>” is split into sub categories:

“subject plus verb”, “do”, “want”.

Inside the category “want” there are different patterns that match with the mean-

ing “want”. As a result, an affirmation like “This is my best friend” can be also

formulated “that s my best friend”, “Here is my best friend” and etcetera.

Simply by setting the words “this is”, “that s”, and “here is” in the same cate-

gory.

Thematic classes are containing the specific phrases for a given theme. In Ap-

pendix D you can see a chart that describes the building of this corpus. In Addi-

tion to this diagram an excerpt of the source code is available in Appendix E.

For example the threat theme is dispatched into several classes threatverb, threath-

noun, threatadj which respectively contain the specific verbs, nouns and adjectives

for the theme threat.

This implies that the corpus is able to differentiate nouns, adjectives and verbs in

a theme. We have the two concepts semantics and syntax mixed together.

If we look at the sentence “it may / can / might / will / could be your last”

(please refer to line 1030 in the Appendix E), the sentence is made of the classes

“subvbe” and “threatnoun” which are associated together in a sequence. The class

subvbe (Please refer to Appendix E line 117) is containing the phrases which are

composed by a subject, an auxiliary and a verb like “it may be” for example. The

second part, threatnoun is containing specific nouns, which are involved in the

threat theme (Please refer to Appendix E line 606) like “your last”.

As specified in part 6.1.2, performance was really slow because of the complexity

of this corpus and that is why the idea of building such a complex corpus was

abandoned.

The idea of classifying the corpus in this way was a good idea to show how to deal

with a complex speech structure and how to classify it and the problems that were

raised.

CHAPTER 4. BUILDING THE CORPUS 28

4.5 Final version of the Corpus

It has been decided that the classification of the themes will be fully managed at

the templates level. The final version of the corpus is based on plain text sentences

and alternatives.

The final version of the corpus is about 300 sentences (without alternatives) and

contains a dictionary of 400 words.

An excerpt of the final version of the corpus is available in Appendix F.

The final corpus is containing 3 classes: ACTOR, TITLE and AUXILIARY as

well as alternatives and optional(Please refer to appendix F line 10).

If we look at this example: “You are just a stupid secret agent”

seq(

<PRONOUN> “are” opt(“just” “nothing but”)opt “a” alt(“silly” “dumb”

“stupid”)alt alt(“secret agent” “policeman”)alt

)seq

Using optional and alternatives a sentence can be said in many different ways

which make the system flexible. In this example we can have 18 different ways to

say the sentence :

you are a silly policeman.

you are a stupid policeman.

you are a dumb policeman.

you are a silly secret agent.

you are a stupid secret agent.

you are a dumb secret agent.

you are just a silly secret agent.

you are just a stupid secret agent.

you are just a dumb secret agent.

you are just a silly policeman.

you are just a stupid policeman.

you are just a dumb policeman.

you are nothing but a silly secret agent.

you are nothing but a stupid secret agent.

you are nothing but a dumb secret agent.

you are nothing but a silly policeman.

you are nothing but a stupid policeman.

you are nothing but a dumb policeman.

CHAPTER 4. BUILDING THE CORPUS 29

Another issue was raised while testing this version of the corpus during the tem-

plate tests. Indeed, the system is clearly better at recognizing group of words than

isolated words.

In the previous example, defining the utterances as “you are just”, “you are nothing

but”, “a stupid policeman”,“a silly secret agent” and etcetera, will improve the

accuracy of the system. That is why in the prototype version of the corpus, group

of words are defined rather than isolated words.

Chapter 5

Embedding in Unreal

5.1 The aim of the templates

The system is using the ear SDK (c©BabelTech), as a platform to transform speech

recognition utterances into speech acts appropriate for the Artificial Intelligence

planning layer. To provide suitable speech acts, templates have to be implemented

by defining sentence/action-based pattern.

There are two different types of templates used for different purposes:

The speech acts templates define speech acts recognized by the ear SDK. Its struc-

ture consists in classes, which contain words or specific phrases linked to a specific

act. The matching templates define sentences using speech act template classes.

Thus, once generated and recognized these acts can be used to modify the unreal

scenario.

5.2 Implementing the templates

5.2.1 The structure

The templates are managed into two natural language understanding (.nlu) files.

The first one “templates.nlu” is defining the relation between words or group of

words recognized by the ear SDK and the speech acts. In this file the first part is

to declare a set of main speech acts representing the themes defined in section 4.3

as follow:

enum E SentenceClass {
eSA INTRO

eSA AGREEANS

30

CHAPTER 5. EMBEDDING IN UNREAL 31

eSA GREETHI

eSA GREETBY

eSA THANKS

eSA DENIAL

eSA THREAT

eSA COMPLAINS

eSA INCRED

eSA ADVICE

eSA CHALLENGE

eSA MISUNDER

eSA DRINKS

eSA OFFENSIVE

eSA DISAGREEACT

eSA GUNDROPING

eSA HANDSOHEADS

eSA MOVOUT

eSA AGREEACT

eSA COMPLIMENT

eSA DISAGREEANS

eSA ROMANCE

};
Those speech acts consist into an enumeration of classes in which the order is pre-

defined to allow the speech act dispatcher to recognize speech acts only identified

by enum numbers.

As the ear SDK is sending speech recognition data using UDP, it increases the

performance of the system, indeed, instead of sending long text data, only the

identifier number of those classes is sent. Another series of enumeration list is

necessary to identify sub speech acts classes.

For instance, if we have the theme Drinks, this main theme will be Drinks and the

sub speech acts classes will be eDrinkSake, eDrinkMartini and etcetera to allow

the speech dispatcher to associate specific acts to expression pronounced by the

user:

enum E Drink {
eDrinksake

eDrinkVodka

eDrinkStir

eDrinkMartini

CHAPTER 5. EMBEDDING IN UNREAL 32

};
Using this methodology, the system is able to identify specific acts, which is pri-

mordial in such an environment. The last part of the templates file is about the

definition of all the words or group of words that correspond to a specific theme

and sub speech act classes. In our case drinks we have:

template tDrink =

”sake” eDrinksake [] +

”vodka” eDrinkVodka [] +

”stirred” eDrinkStir [] +

”martini” eDrinkMartini [];

The series of enumeration eDrink* is linked to the main speech act theme eSA Drinks.

Here is a chart describing the above example:

Figure 5.1: Chart describing the processing of the templates

There is a second natural language understanding file (sentences.nlu) that aims

at defining and build all the sentences that was defined previously in the corpus.

Each sentence is identified by:

• A unique number.

CHAPTER 5. EMBEDDING IN UNREAL 33

• The speech act the sentence is referring to (e.g. eSA DRINKS).

• The name of the template used itself (e.g. tDrink).

Using this methodology, the system is not only able to recognize the main theme

but can also recognize sub utterances within a given theme.

5.2.2 First version of the templates and problems raised

The first version of the templates was based upon the general idea of associating a

word to a speech act as described in the previous section and was aimed at having

a better knowledge of the system.

The first version of the templates is dealing with the all the themes described

before (Please refer to 5.2.1 and 4.3).

An excerpt of the implementation of this first version is available in Appendix G.

Let us take as an example the sentence “it is insulting to think i haven t antici-

pated your every move” (Please refer to Appendix G (Source Code Line 429)):

sentence s0156 =

eSA COMPLAINS

[“it” “is” tCompl “to” “think ” “i” “havent ” “anticipated ” “ your ” “every”

“move ”]

[^tDenials];

The word which recognized the speech act in this example is “insulting” which is

defined as eComplinsult ((Please refer to Appendix G (Source Code Line 299)).

The first problem raised was that if the system does not recognize the word ”in-

sulting” the sentence was not validated.

Although some of the sentences were validated by the system, the system was rec-

ognizing words defined with double quote as isolated words (Please refer to 6.2.2

Testing Results). This gave low accuracy results.

A lot of errors occurred also because of the case sensitivity of the language, the

templates have to reflect exactly the corpus.

The above problems played a role also on the meaning of the sentences; indeed

during the first test session a lot of sentences were meaningless.

5.2.3 Design of the templates

The flexibility of the templates and the meaning of the sentences to be output are

the key points in this part.

As specified in the article of the magazine EDN:

CHAPTER 5. EMBEDDING IN UNREAL 34

“In general, sentences are easier to recognize than words, given that a

sentence has more variation from other sentences than words do from

words. Longer responses, such as “Buy stocks” or “View my portfolio,”

are easier to recognize than shorter ones, such as “Buy” or “View”.

Nicolas Cravotta. Speech recognition it’s not what you say; it’s how you say it[6].

To avoid the problems specified in the previous part we have to consider that

group of words are better recognized by the system than isolated words.

Analysing all the sentences to see what they have grammatically in common was

the first step.

Let us consider the theme denials as an example for this part. If we look at the

sentences which are in the theme Denials (Please refer to Appendix H line) we

can see that we can split the sentences into two main parts. The beginning of the

sentences, which is grammatically important, but with no meaning and the second

part of the sentences that will identify the speech act.

If we look at those sentences :

• Why would you like to know

Why would you like to know

Why are you interested

Why do you care

sentence s0082 =

eSA DENIALS

[tstartQuestw tDenialsProp]

[^tstartQuestw ^tDenialsProp];

• Why do you care,Mr Bond

Why would you like to know,Mr Bond

Why are you interested Mr Bond

(Appendix H line 488) sentence s0083 =

eSA DENIALS

[tstartQuestw tDenialsProp tActor]

[^tstartQuestw ^tDenialsProp ^tActor];

The first part of the sentences is starting by a question word associated

with a verb and the second part is a group of words that defines the mean-

ing of the sentence. It is this group of words that as to be linked to the

CHAPTER 5. EMBEDDING IN UNREAL 35

speech act.

To do so, a template which contains the question tags which starts by “W”

was created. This part includes group of words such as “why are”, “why do”

and etcetera. The second part will consist of large group of words, which

are defined in the template Denials Propositions. This template contains the

expression ”are you interested”, ”you care”, ”you like to know”.

The interesting bit here is that if the first part of the sentence is unfortu-

nately unrecognised by the system, the second part is meaningful without

his first part. As specified in the part structure (Please see 5.2.1), although

those expressions are in the same template, an enumeration type identifies

them. For example for the expression ”you like know”, it will be recognized

as Denials proposition and also as a “eDenialKnow”. The Figure 5.2 de-

scribes the process the templates in the prototype version of the templates.

Figure 5.2: Templates Processing Chart

As the figure 5.2 shows it, the first part of the sentence in the first example on

the figure is tstartQuestw containing all the appropriate question tags which

start with a W (Please refer to appendix H Line 313), and the second part

tThreatsStart1 which contains specific threat theme long expressions(Please

refer to appendix H Line 225).

A Class definition diagram of all the classes embedded in the prototype

version is available in Appendix I. This diagram is describing the whole

templates definition of the prototype.

Chapter 6

Testing and refinement

6.1 Testing the Corpus

6.1.1 Efficiency testing techniques

Several tests have been done on the corpus using the c©BabelTech Lex Editor

and a microphone. The tests were based on telling all the sentences that were

in the corpus using a microphone. By testing all the sentences and writing

the result in a table an average of the number of the sentence recognized on

one hundred was produced.

6.1.2 Testing results

• Thematic based grammar Corpus Test: The first problem encoun-

tered during this test was the delay between the pronunciation of a

sentence and the recognition. The delay was about one minute; the

recognition was too long because of the complexity of the corpus struc-

ture. This problem was caused by a too much use of the operating

system resources, when the system is loading and recognizing speech

the central processing unit was 100 per cent. On 100 sentences only

35 was recognized without errors. Again because of the complexity

of the structure the system gets quickly confused. For example if the

user says the sentence “Failure is not tolerate” the system recognized

“amusement a date of”.

36

CHAPTER 6. TESTING AND REFINEMENT 37

• Final corpus version Test:

By decreasing the structure of the corpus, the performance of the system

was better than before. Indeed the recognition delay was about 1 to 2

seconds, and the CPU usage never reached 100 per cent, it was about

50 to a maximum of 90 per cent during the recognition process. On 100

sentences an average of 65 sentences was recognized depending on the

complexity of the sentences. However the main reason of the speech

recognition errors was caused by the isolated words structure in the

corpus.

• Test on the Latest version of the corpus used for the current

prototype:

During the last test the system was able to recognize an average of 75

sentences on 100. Structuring the corpus by group of words was the

solution to the problems encountered in the previous tests. Indeed,

we have a better recognition because there were no conflicts anymore

between the isolated words.

6.2 Testing the templates

6.2.1 Efficiency testing techniques

The first point was to compiled the two natural language understanding

(“.nlu”) files using an application called Natlang provided by Mr. Steven

Mead. The application aims at debugging the code and checking the valid-

ity of the sentence by typing them within the keyboard as illustrated by the

Figure 6.1.

In this example, the expression “hello” and “hello mister bond” are valid

sentences. The application is displaying relevant information on the recog-

nized speech acts: The classification field is indicating the main speech acts

of the sentence in this case [2]. It corresponds to eSA GREETHI (greetings).

The template number, which in our case is 9 and corresponds to “tGreetHi”.

And finally the instance which contains the specific speech act “eGreethiHi”.

After this first testing was done another important test was to use a test ap-

plication provided by Fred Charles. The first step was to export the finite

state grammar of the corpus into an ear application, then specifying the

path of the templates file. After that the application launches the ear sdk

CHAPTER 6. TESTING AND REFINEMENT 38

Figure 6.1: NatLang Screen Shot

system and unreal. After by using a microphone the aim is to pronounce

all the sentences provided in the templates and see if they are all properly

recognized.

A screenshot of the application is available in Appendix I.

The application is able to provide log files to display a description of the

sentences well recognized and validated by the system. This application was

really helpful to improve the design of the templates.

6.2.2 Testing results

• Test on the first version of the templates :

Small expressions like “hello”, “I agree” were well recognized. But all

the complex or even normal sentences were confusing the system. For

example “I want to know that”, was implemented as follow:

“I” “want” “to” “know” tDenials “that”.

Again the system is confused by isolated words.

• Test on the latest version of the templates used for the current

prototype:

CHAPTER 6. TESTING AND REFINEMENT 39

The latest version of the templates based on the part design of the

templates is structured by group of words. All the sentences were well

recognized with an average of about 77 sentences recognized on 100.

6.3 Outcome

Currently the system has appreciable recognition accuracy (77%). The ac-

curacy can be improved by sub-categorizing again the class Sentence in the

templates (Example: tbegGeneBe and etcetera (Appendix I, SENTENCE))

to allow a better validation of the sentences by the system.

For example, if we take the sentence “Why_cant” “you_just_be_a_good

_boy_and_die”.

The sequence “why cant” (Appendix H.1, line 313) is included in the class

tstartQuestw which also contains other sequences like “what are ”,“ whats

” and etcetera.

That means in some rare cases the sentence “what are” “you just be a good

boy and die” can be recognized by the system as a valid sentence.

Even if the system will validate the sentence in the right way by recognizing

the relevant speech acts defined by the phrase “you just be a good

boy and die” the sentence is not grammatically correct.

By subcategorising the class tstartQuestw the syntax of the sentence can be

better parsed.

Although the system can still produced in some cases grammatically invalid

sentences, it is recognizing the relevant speech acts most of the time, which

is more important in such a system.

The flexibility of the system can be improved as well by extending the proto-

type corpus and the prototype templates using the final version of the corpus

produced previously.

Chapter 7

Conclusion

We have presented a vocal interface to a computer animation system and

methodologies to build such an interface.

A research on Speech recognition systems and Natural language methodolo-

gies has been done as well as a review of the use of Natural language in

an interactive storytelling system. Several methodologies have been imple-

mented and tested to see which one can provide the best output.

A working prototype version based on six themes has been produced with

an average of 77% sentences well recognized and validated by the system

(Please refer to 6.2.2). However, the prototype could be extent to twenty

themes. Some part of the templates definition can be improved (Please refer

to 6.2.3) for the system to better parse the syntax.

A corpus has been as well produced containing 20 themes, 300 sentence and

400 words in the dictionary.

The final step consists in extending the templates by adding the alterna-

tives included in the final version of the corpus in order to make the system

even more flexible.

The constraints that have had to be considered are that to build a specific

vocal interface to a computer animation system, a complex syntactic gram-

mar structure is not required.

However, it could have been pertinent to reuse a pre-built English grammar

definition to parse the sentences.

But building such a complex grammar alone was not appropriate due to the

time schedule of the project, it requires more time.

40

CHAPTER 7. CONCLUSION 41

The accuracy of the system is based upon three key points, the flexibil-

ity and the size of the corpus, the way of dealing with the speech acts and

the structure of the sentences.

Bibliography

[1] Avron Barr and Edward A. Feigenbaum. The Handbook of artificial

intelligence, v.I. William Kaufman, Inc., Los Altos, Calif, 1981, 1981.

[2] David J. Buerger. LATEX for Engineers and Scientists. McGraw-Hill,

New York, NY, USA, 1990.

[3] Marc Cavazza. Virtual unreality: Storytelling in virtual environments.

ACM VRST, 2003.

[4] Marc Cavazza, Fred Charles, and Steven J. Mead. Non-instructional

linguistic communication with virtual actors. In Proceedings IEEE In-

ternational Workshop on Robot and Human Interactive Communication

Vlizy, France, pages 26–31, 2001.

[5] Cavazza M. Charles F. and Mead S.J. Interactive storytelling: From

computer games to interactive stories. The Electronic Library, pages

103–112, 2002.

[6] Nicolas Cravotta. Speech recoginition it’s not what you say; it’s how

you say it. EDNMAG, pages 79–88, June 24, 1999. http://www.

reed-electronics.com/ednmag/contents/images/45962.pdf.

[7] Olivier Deroo. A short introduction to speech recognition, 2003. http:

//www.babeltech.com/download/SpeechRecoIntro.pdf.

[8] Antoni Diller. LATEX Line by Line: Tips and Techniques for Docu-

ment Processing. Wiley Professional Computing. Wiley, Chichester,

UK, 1993. Optionally accompanied by disk with examples, ISBN 0-471-

93797-5.

[9] Sam Hsiung. An introduction to natural language processing. Gen-

eration 5, December 19, 1999. http://www.generation5.org/content/

1999/nlpoverview.asp.

42

BIBLIOGRAPHY 43

[10] Daniel Jurafsky and James H. Martin. SPEECH and LANGUAGE

PROCESSING: An Introduction to Natural Language Processing, Com-

putational Linguistics, and Speech Recognition. Prentice-Hall, 2000.

[11] Steven Mead, Marc Cavazza, and Fred Charles. Influential words: Nat-

ural language in interactive storytelling. 10th International Conference

on Human-Computer Interaction, Crete, Greece, 2003.

[12] Diego Molla. Introduction to natural language processing, overview

of language technology. In Lecture. Macquarie University, Syd-

ney, 2003. http://www.comp.mq.edu.au/units/comp248/lectures/

comp248-2003-W01-L2.pdf.

[13] Woojin Paik. Natural language processing (nlp). In Lecture, 2002.

http://www.cs.umb.edu/cs670/lecture-10302002.pdf.

[14] Ellen Riloff. Lecture: Introduction to nlp, 2003. http://www.cs.utah.

edu/classes/cs5340/slides/introduction.pdf.

[15] George W. Smith. Computers and Human Language. Oxford University

Press, Oxford, 1991.

[16] V. Zue and R. A. Cole. Spoken language input. In Survey of the State

of the Art in Human Language Technology, pages 1–57, 1996.

Appendix A

Project specification

Development of a vocal interface to a computer animation system.

The objective of the project is to produce a speech recognition grammar

that aims at improving the communication between the user and the ma-

chine within an animation system.

It will improve the way the user is communicating with virtual characters in

a video game like environment.

The speech recognition grammar will be built using the Babel lexicon editor

(c©BabelTech).

The speech recognition grammar has to be implemented to manage whatever

the game is, or the software that uses the grammar is. Thus, the grammar

has to contain all the English basic words (like auxiliary, standard verbs and

etcetera).

The first thing to do is to analyse how the English grammar and typical

sentences are built, and examine how to build simple sentences within the

lexicon editor: this is the analysis phase.

An analysis of the linguistic processing using by the Interactive Storytelling

System has to be done as well in order to be aware of what the ISS needs.

The design phase will consist of defining how to create a Finite State Gram-

mar template which will contain all the grammar rules and definitions into

classes, so grammar rules has to be defined.

44

APPENDIX A. PROJECT SPECIFICATION 45

During this phase several charts have to be done to explain how the words

are linked together or not.

Once the design is done, it has to be validated and tested to prevent post

failure in the next steps of the project.

The Implementation phase will use previous research work to implement the

FSG template.

The testing and refinement step will, refine and test if the FSG file is correct,

and it aims to detect any errors and correct them.

The animation system that will be used for the end test will be the Interac-

tive Storytelling System used by the university.

If time permits it, a tool will be implemented to allow the user to dynami-

cally change the FSG file without being compelled to write any FSG code.

The final report will be written ongoing the project.

The minimum objective of my project is to produce a flexible speech recog-

nition grammar template to be used by an animation system.

Proposed time schedule:

Analysis - 3 weeks

Design and Interim Report - 6 weeks

Implementation - 6 weeks

Testing and Refinement - 5 weeks

Writing Report - 2 weeks

Appendix B

BabelTech Lexicon Editor

screenshot

Figure B.1: Babel Tech Lexicon Editor Screenshot

46

Appendix C

Excerpt of the syntactic based

Corpus

C.1 Grammar Definition

...

10 <ARTICLE > =

11 alt(

12 the

13 a

14)alt;

15 <PREPOSITION > =

16 alt(

17 seq(

18 alt(

19 next

20 of

21 to

22 on

23 in

24 with

25 for

26 against

27)alt

28)seq

29)alt;

30 <NOUN > =

31 alt(

32

33 opt(<QUANTIFIER >)opt

34 opt(<ARTICLE >)opt

35 opt(<CARDINAL >)opt

36 chance

37 ppk

38 good

39 men

40 women

41 time

42 sense

43 form

47

APPENDIX C. EXCERPT OF THE SYNTACTIC BASED CORPUS 48

44 "name_s"

45 no

46 last

47 witticism

48 policeman

49 mister

50 information

51 sex

52 violence

53 gun

54)alt;

55

56 <SUBJECT > =

57 alt(

58 it

59 I

60 you

61 we

62 they

63)alt;

64

65 <PRONOUN > =

66 alt(

67 my

68 me

69 your

70 myself

71 us

72)alt;

73 <VERB > =

74 alt(

75 have

76 hope

77 fail

78 admiring

79 dreaming

80 be

81 expect

82 die

83 choose

84 introduce

85 let

86 allow

87 see

88 buy

89 located

90 give

91 finding

92 talking

93 go

94 corpses

95 misjudged

96 come

97 going

98 need

99)alt;

100 <ADVERB > =

101 alt(

102 each

103 always

104 absolutely

105 well

106 carefully

107 unfortunately

108 never

109 only

110)alt;

111 <ADJECTIVE > =

112 alt(

APPENDIX C. EXCERPT OF THE SYNTACTIC BASED CORPUS 49

113 opt(<ARTICLE >)opt

114 opt(<CARDINAL >)opt

115 opt(<QUANTIFIER >)opt

116 "fifty_fifty"

117 golden

118 gratuitous

119 my

120 nice

121 stupid

122 just

123)alt;

124 <AUXILIARY > =

125 alt(

126 be

127 been

128 could

129 have

130 can

131 are

132 must

133 am

134)alt;

135 <CONJUCTION > =

136 alt(

137 and

138)alt;

139

140 <CARDINAL >=

141 alt(

142 first

143 second

144 one

145)alt;

146

147 <COUNTRY >=

148 alt(

149 Japan

150)alt;

151 <NAME > =

152 alt(

153 Bond

154 James

155 James_Bond

156 Ernst_Stravo_Blodfeld

157)alt;

158

159 <QUANTIFIER > =

160 alt(

161 some

162)alt;

163 #Nominal Compliment

164 <NC >=

165 seq(

166 rep(

167 opt(<ADJECTIVE >)opt

168)rep

169 <NOUN >

170 rep(

171 opt(<NOUN >)opt

172)rep

173 opt(<NAME >)opt

174)seq;

175 #Nominal Phrase

176 <NP >=

177 seq(

178

179 rep(

180 opt(<ADJECTIVE >)opt

181)rep

APPENDIX C. EXCERPT OF THE SYNTACTIC BASED CORPUS 50

182 <NOUN >

183 rep(opt(<NOUN >)opt)rep

184

185)seq;

186

187 #Preposition Phrase

188 <PP >=

189 seq(

190 <PREPOSITION >

191 alt(

192 opt(<AUXILIARY >)opt

193 <VERB >

194 alt(<COUNTRY >

195 <NC >

196 <NP >

197)alt

198)alt

199 opt(<ADVERB >)opt

200)seq;

201 #Verbal Phrase

202 <VP >=

203 seq(

204 opt(<ADVERB >)opt

205 opt(<SUBJECT >)opt

206 opt(<ADVERB >)opt

207 opt(<AUXILIARY >)opt

208 <VERB >

209)seq;

210

...

C.2 Some sentences examples

...

260 # Choose your next witticism carefully mr bond , it could be your last.

261 seq(

262 <VP >

263 <PRONOUN >

264 <PP >

265)seq

266

267 seq(

268 <VP >

269 <PRONOUN >

270 <NOUN >

271)seq

272 #no mr bond I expect you to die

273 seq(

274 <NC >

275 <VP >

276 <SUBJECT >

277 <PP >

278)seq

279

280 # allow me to introduce myself , I am ernt stqvro blofeld

281 seq(

282 <VP >

APPENDIX C. EXCERPT OF THE SYNTACTIC BASED CORPUS 51

283 <PRONOUN >

284 <PP >

285 <PRONOUN >

286)seq

287

288 seq(

289 <VP >

290)seq

291 #good to see you mr bond , I hope we are going to have some gratuitous sex

and violence
292

293 seq(

294 <NOUN >

295 <PP >

296 <SUBJECT >

297 <NC >

298)seq

299

300 seq(

301 <VP >

302 <VP >

303 <PP >

304 <CONJUCTION >

305 <NOUN >

306)seq

307

...

Appendix D

FSG definition Chart (Complex

Corpus)

52

APPENDIX D. FSG DEFINITION CHART (COMPLEX CORPUS) 53

Figure D.1: Finite State Grammar Definition Chart

APPENDIX D. FSG DEFINITION CHART (COMPLEX CORPUS) 54

Figure D.2: Finite State Grammar Definition Chart

APPENDIX D. FSG DEFINITION CHART (COMPLEX CORPUS) 55

Figure D.3: Finite State Grammar Definition Chart

Appendix E

Thematic based corpus excerpt

E.1 Some grammar rules definition examples

...

11 <name >=

12 alt(

13 Colonel_ourumov

14 to_think

15 Bond

16 James

17 James_Bond

18 Ernst_Stravo_Blodfeld

19 Domino

20 Tanaka

21 Tiger

22 Number_three

23

24)alt;

25 #Preposition

26 <prep >=

27 alt(

28 that

29 next

30 of

31 to

32 on

33 in

34 in_the

35 with

36 for

37 against

38 from

39)alt;

40 #prep + sub

41 <prepcomb >=

42 alt(

43 for_this

44 in_the

45 to_the

46 with_your

47 for_me

48 to_you

56

APPENDIX E. THEMATIC BASED CORPUS EXCERPT 57

49 to_me

50 without_me

51 with_me

52 with_you

53 each_of

54)alt;

55 <adjectiveism >=

56 alt(

57 witticism

58)alt;

59 #Adjectives combination

60 <adjcomb >=

61 alt(

62 unpleasant_surprise

63 fatal_weakness

64 simple

65 very_simple

66)alt;

67

68 <condition >=

69 alt(

70 if_he

71 if_you

72)alt;

73 # to be :: Subject + be

74 <subbe >=

75 alt(

76 you_will

77 ythey_are

78 this_is

79 I_was

80 it_is

81 I_am

82 I_am_not

83 you_are

84 you_are_that

85 you_were

86)alt;

87 # preposition + be

88 <prepbe >=

89 alt(

90 just_be

91 that_are

92 who_are

93)alt;

94

95 # to be :: be + word

96 <iscomb >=

97 alt(

98 is_quite

99 is_not

100 is_always

101 is_the

102 is

...

117 # Subject proba auxiliary

118 <subvbe >=

119 alt(

120 it_will_be

121 it_could_be

122 it_might_be

123 it_can_be

124 it_may_be

125)alt;

APPENDIX E. THEMATIC BASED CORPUS EXCERPT 58

...

231 <subverb >=

232 alt(

233 I_said

234 I_expect

235 he_promises

236 I_beg

237 they_belong_to

238 you_have_lost

239 it_may_help

240 it_might_help

241 it_can_help

242 you_cant

243 you_mustnt

244 we_couldnt

245 we_wont

246 we_will_not

247 we_cant

248 we_cannot

249 I_could

250 I_can

251 I_think

252 you_think

253 you_know

254 it_will_help

255 you_get

256 men_always_come

257 women_come

258)alt;

259

260

261 <adverb >=

262 alt(

263 slowly

264 always

265 again

266 totally

267 each

268 always

269 absolutely

270 well

271 carefully

272 unfortunately

273 never

274 completely

275 only

276 too

277)alt;

278 <conj >=

279 alt(

280 or

281 and

282 that

283 for

284 but

285 just_for

286)alt;

287 #Conj combination

...

APPENDIX E. THEMATIC BASED CORPUS EXCERPT 59

E.2 Specific theme grammar definition

...

591 #Threat

592 <threatvb >=

593 alt(

594 toss

595 kill_me

596 Throw_down

597 Fire

598 fail

599)alt;

600 <threatadj >=

601 alt(

602 fifty_fifty

603 a_fifty_fifty

604 stupid

605)alt;

606 <threatnoun >=

607 alt(

608 you_fool

609 the_limbs

610 failure

611 your_last

612)alt;

...

E.3 Some sentences examples from the Threat

Theme

...

973 #----------threats ----------------

974 <THREAT >=

975 Alt(

976 #you will die for this

977 seq(

978 <subbe >

979 <iverb >

980 <prepcomb >

981)seq

982 #threat

983 #you are mine now

984 seq(

985 <subbe >

986 <pronposs >

987 <times >

988)seq

989 #your fatal weakness

990 seq(

991 <pronoun >

992 <adjcomb >

APPENDIX E. THEMATIC BASED CORPUS EXCERPT 60

993)seq

994 #Why cant you just be a good boy and die?

995 seq(

996 <whquestst >

997 <prepbe >

998 <goodness >

999 <conj >

1000 <iverb >

1001)seq

1002 #you were supposed to die for me

1003 seq(

1004 <subbe >

1005 <pret >

1006 <toverb >

1007 <prepcomb >

1008)seq

1009 #but sorry

1010 seq(

1011 <conj >

1012 <nouns >

1013 opt(

1014 <name >

1015)opt

1016)seq

1017

1018 #Choose/pick your next witticism carefully Mr Bond ,

1019 seq(

1020 <iverb >

1021 <pronoun >

1022 <prep >

1023 <adjectiveism >

1024 <adverb >

1025 opt(

1026 <name >

1027)opt

1028)seq

1029

1030 #it may/can/might/will/could be your last

1031

1032 seq(

1033 <subvbe >

1034 <threatnoun >

1035)seq

1036

...

Appendix F

Corpus final version excerpt

F.1 Classes Definitions

...

10 <TITLE > =

11 alt(

12 "mister"

13 "miss"

14)alt;

15 <PRONOUN > =

16 alt(

17 "I"

18 "you"

19 "he"

20 "she"

21 "we"

22 "you"

23 "they"

24)alt;

25 <AUXILIARY > =

26 alt(

27 "could"

28 "would"

29 "am"

30 "is"

31 "are"

32 "do"

33 "will"

34 "may"

35 "might"

36)alt;

37 <NEGATION > =

38 seq(

39 opt(<AUXILIARY >)opt

40 alt(

41 "not"

42)alt

43)seq;

44 <ACTOR > =

45 seq(

46 opt(<TITLE >)opt

47 alt(

61

APPENDIX F. CORPUS FINAL VERSION EXCERPT 62

48 "james bond"

49 "bond"

50 "double o seven"

51 "goldfinger"

52)alt

53)seq;

...

F.2 Denial Theme

...

57 #----------------DENIAL

--

58 #How would I know , Mr Bond

59

60 seq(

61 "how would" <PRONOUN > "know" opt(<ACTOR >)opt

62)seq

63

64 #How would I be aware of that , Mr Bond

65

66 seq(

67 "how would" <PRONOUN > "be" "aware" "of" "that" opt(<ACTOR >

)opt

68)seq

69

70 #I don’t have a clue

71 seq(

72 "I" "don_t" "have" "a" alt("clue" "hint")alt

73

74)seq

75

76 #I don’t have a clue

77 seq(

78 "I" "don_t" "have" "a" "clue" "of" "what" "you" "are" "

talking" "about"

79)seq

80 #I have no idea

81 seq(

82 <PRONOUN > "have no idea"

83)seq

84

85 #I would not know

86 seq(

87 <PRONOUN > <NEGATION > "know"

88)seq

89

90 #I could not tell you

91 seq(

92 <PRONOUN > <NEGATION > "tell" <PRONOUN >

93)seq

94

95

96 #Do you seriously think I would tell you

97 seq(

98 "do" "you" "seriously" "think" <PRONOUN > "would" "tell" <

PRONOUN >

APPENDIX F. CORPUS FINAL VERSION EXCERPT 63

99)seq

100 #I am not telling you this

101 seq(

102 <PRONOUN > <NEGATION > "telling" <PRONOUN > alt("this" "that"

)alt

103)seq

104

105 #Why would I tell you

106 seq(

107 "why would" <PRONOUN > "tell" <PRONOUN >

108)seq

109 #I am not talking to you , Mr Bond

110 seq(

111 <PRONOUN > <NEGATION > "talking" "to" <PRONOUN > opt(<ACTOR >)

opt

112)seq

113 #Why would I give you such informatio

114 seq(

115 "why" "would" <PRONOUN > "give" <PRONOUN > "such" "information

"

116)seq

117

118

119 #This is no business of yours

120 seq(

121 "this" "is" "no" "business" "of" "yours"

122)seq

123 #This is none of your business

124 seq(

125 "this" "is" "none" "of" "your" "business"

126)seq

127

128 #It s not your business

129 seq(

130 "it" <NEGATION > "your" alt("business" "deal")alt

131)seq

132

133

134

135 #You’re wasting your time

136 seq(

137 <PRONOUN > "are" "wasting" "your" "time"

138)seq

139 #You’re wasting my time

140 seq(

141 <PRONOUN > "are" "wasting" "my" "time"

142)seq

143 #You don’t want to know

144 seq(

145 <PRONOUN > <NEGATION > "want" "to" "know"

146)seq

147

148 #You are not serious

149 seq(

150 <PRONOUN > <NEGATION > alt("serious" "sincere" "honest")alt

151)seq

152 #You are joking

153 seq(

154 <PRONOUN > "are" "joking"

155)seq

156 #is it a joke ?

157 seq(

158 "is" "it" "a" "joke"

159)seq

160

161 #You must be joking

162 seq(

163 <PRONOUN > "must" "be" "joking"

164)seq

APPENDIX F. CORPUS FINAL VERSION EXCERPT 64

165 #Are you serious , Mr Bond

166 seq(

167 "are" <PRONOUN > "serious" opt(<ACTOR >)opt

168)seq

169

170 #Why would you like to know

171

172 seq(

173 "why would" <PRONOUN > "like" "to" "know"

174)seq

175

176 #Why do you care , Mr Bond

177 seq(

178 "why do" <PRONOUN > "care" opt(<ACTOR >)opt

179)seq

180 #Why are you interested

181 seq(

182 "why are" <PRONOUN > "interested"

183)seq

184 #Why do you want to know

185 seq(

186 "why do" <PRONOUN > "want" "to" "know"

187)seq

188

189 # Why will I share this piece of information with you ?

190 seq(

191 "why" "will" "i" "share" alt("this piece of information" "

that")alt "with" "you"

192)seq

193

194 #I won t tell you 007

195 seq(

196 <PRONOUN > "won_t" "tell" <PRONOUN >

197)seq

198 # you are too curious bond

199 seq(

200 "you" "are" "too" "curious" opt(<ACTOR >)opt

201)seq

202

203 # are u sure you want to get involved in that ?

204

205 seq(

206 "are" "you" "sure" "you" "want" "to" "get" "involved" "in"

"that" opt(<ACTOR >)opt

207)seq

208

209 #You are not able to know that

210 seq(

211 <PRONOUN > <NEGATION > "able" "to" "know" "that"

212)seq

213 #You don t need to know that

214 seq(

215 <PRONOUN > "don_t" "need" "to" "know" "that"

216)seq

217

218 #I can t tell you

219 seq(

220 <PRONOUN > "can_t" "tell" <PRONOUN >

221)seq

222

223 #It is confidential

224 seq(

225 "it" "is" alt("confidential" "private" "secret")alt

226)seq

227

228

229 #Let s go down to business

230 seq(

231 "lets" "get" "down" "to" "business"

APPENDIX F. CORPUS FINAL VERSION EXCERPT 65

232)seq

233

234 # It is not in your interest to know that

235 seq(

236 "it" "is" "not" "in" "your" alt("interest" "concern" "

preoccupation")alt "to" "know" "that"

237)seq

238

239 # you should not worry about that

240 seq(

241 "you" "should" "not" "worry" "about" "that"

242)seq

243

244 #don’t ask

245 seq(

246 "don_t" "ask"

247)seq

248 #you ’d better forget about that

249 seq(

250 "you_d" "better" "forget" "about" "that"

251)seq

252 #Which game are you playing ?

253 seq(

254 "which" "game" "are" "you" "playing"

255)seq

...

Appendix G

Templates first version source

code Excerpt

G.1 Templates First Version Definition Ex-

ample

...

3 enum E_SentenceClass {

4 eSA_INTRO

5 eSA_AGREEANS

6 eSA_GREETHI

7 eSA_GREETBY

8 eSA_THANKS

9 eSA_DENIAL

10 eSA_THREAT

11 eSA_COMPLAINS

12 eSA_INCRED

13 eSA_ADVICE

14 eSA_CHALLENGE

15 eSA_MISUNDER

16 eSA_DRINKS

17 eSA_OFFENSIVE

18 eSA_DISAGREEACT

19 eSA_GUNDROPING

20 eSA_HANDSOHEADS

21 eSA_MOVOUT

22 eSA_AGREEACT

23 eSA_COMPLIMENT

24 eSA_DISAGREEANS

25 eSA_ROMANCE

26 };

...

101

102 enum E_Compl {

66

APPENDIX G. TEMPLATES FIRST VERSION SOURCE CODE EXCERPT 67

103 eCompludid

104 eCompldoneth

105 eComplome

106 eCompldare

107 eComplinsult

108 eComplno

109 };

110

111 enum E_Incre {

112 eIncretrust

113 eIncresure

114 eIncrerely

115 };

116

117 enum E_Adv {

118 eAdvatt

119 eAdvcare

120 };

121

122 enum E_Chall {

123 eChallwarn

124 eChalldareu

125 };

126

127 enum E_Misund {

128 eMisundsor

129 eMisundsay

130 eMisundrep

131 };

...

292

293 /* Complains (8) */

294 template tCompl = "you_did"

eCompludid [] +
295 "did_you"

eCompludid [] +
296 "done_that"

eCompldoneth [] +
297 "to_me"

eComplome [] +
298 "dare"

eCompldare [] +
299 "insulting"

eComplinsult [] +
300 "nice_one"

eComplno [] ;
301

302 /* Incredulity (9) */

303 template tIncre = "believe"

eIncretrust [] +
304 "trust"

eIncretrust [] +
305 "sure"

eIncresure [] +
306 "rely"

eIncrerely [] ;
307

308 /* Advice (10) */

309 template tAdv = "attention"

eAdvatt [] +
310 "carefull"

eAdvcare [] ;
311

312 /* Challenge (11) */

313 template tChall = "warned"

eChallwarn [] +

APPENDIX G. TEMPLATES FIRST VERSION SOURCE CODE EXCERPT 68

314 "dare_you"

eChalldareu [] ;

315 /* Misunderstanding (12) */

316 template tMisund = "sorry"

eMisundsor [] +
317 "say_it"

eMisundsay [] +
318 "repeat"

eMisundrep [] ;
319

320

...

G.2 Sentences Examples : Complains, Incredulity,

Advice, Challenge, Misunderstanding Themes

...

372 /*

373 * Complains

374 */

375

376 //Do you want to explain why you did that

377

378 sentence s0056 =

379 eSA_COMPLAINS

380 ["do" "you" "want" "to" "explain" "why" tCompl "that"]

381 [^tCompl];

382

383

384 // Would you mind explaining to me why did you that

385 sentence s0057 =

386 eSA_COMPLAINS

387 ["would" "you" "mind" "explaining" "to" "me" "why" tCompl "that"]

388 [^tCompl];

389

390

391

392 // Would you mind explaining to me Have you done that

393 sentence s0058 =

394 eSA_COMPLAINS

395 ["would" "you" "mind" "explaining" "to" "me" "why" "Have" "you"

tCompl]

396 [^tCompl];

397

398 // how could you do that to me

399 sentence s0059 =

400 eSA_COMPLAINS

401 ["how" "could" "you" "do" "that" tCompl]

402 [^tCompl];

403

404 //I can t believe you did that

405 sentence s0060 =

406 eSA_COMPLAINS

407 ["i" "cant" "believe" tCompl "that"]

408 [^tCompl];

409

APPENDIX G. TEMPLATES FIRST VERSION SOURCE CODE EXCERPT 69

410 // How come you did that

411 sentence s0061 =

412 eSA_COMPLAINS

413 ["how" "come" tCompl "that"]

414 [^tCompl];

415

416 // How come you ve done that

417 sentence s0062 =

418 eSA_COMPLAINS

419 ["how" "come" "you" "ve" tCompl]

420 [^tCompl];

421

422

423 // How dare you

424 sentence s0063 =

425 eSA_COMPLAINS

426 ["how" tCompl "you"]

427 [^tCompl];

428

429 //it is insulting to think i haven t anticipated ur every move

430 sentence s0064 =

431 eSA_COMPLAINS

432 ["it" "is" tCompl "to" "think" "i" "havent" "anticipated" "your" "

every" "move"]

433 [^tCompl];

434

435

436 // Nice one james

437 sentence s0065 =

438 eSA_COMPLAINS

439 [tCompl tActor]

440 [^tCompl ^tActor];

441

442

443 /*

444 Incredulity

445

446 //I don t believe trust you

447 sentence s0066 =

448 eSA_INCRED

449 ["i" "dont" tIncre you]

450 [^tIncre];

451

452 // Are you sure ?

453 sentence s0067 =

454 eSA_INCRED

455 ["are" "you" tIncre]

456 [^tIncre];

457

458 //I can t rely on that mister bond

459 sentence s0068 =

460 eSA_INCRED

461 ["i" "cant" tIncre "on" "that" tActor]

462 [^tIncre ^tActor];

463

464 */

465 /*

466 * Advice

467 */

468 sentence s0069 =

469 eSA_ADVICE

470 ["Please" "pay" tAdv tActor]

471 [^tAdv ^tActor];

472

473 sentence s0070 =

474 eSA_ADVICE

475 ["be" tAdv tActor]

476 [^tAdv ^tActor];

477

APPENDIX G. TEMPLATES FIRST VERSION SOURCE CODE EXCERPT 70

478

479 /*

480 * Challenge

481 */

482

483 sentence s0071 =

484 eSA_CHALLENGE

485 ["i" "tChall" "you"]

486 [^tChall];

487

488

489 sentence s0072 =

490 eSA_CHALLENGE

491 ["i" "double" tChall]

492 [^tChall];

493

494 /*

495 * Misunderstanding

496 */

497 // sorry

498 sentence s0073 =

499 eSA_MISUNDER

500 [tMisund]

501 [^tMisund];

502 // Say it again please

503 sentence s0074 =

504 eSA_MISUNDER

505 [tMisund "again" "please"]

506 [^tMisund];

507

508 // Repeat it please

509 sentence s0075 =

510 eSA_MISUNDER

511 [tMisund "it" "please"]

512 [^tMisund];

513 // Repeat please

514 sentence s0076 =

515 eSA_MISUNDER

516 [tMisund "please"]

517 [^tMisund];

518

...

Appendix H

Templates source code excerpt

H.1 Templates Definition Example : Denials

and Threats

...

5 /*

6 * Enumerations

7 */

8 enum E_SentenceClass {

9 eSA_INTRO

10 eSA_AGREEANS

11 eSA_GREETHI

12 eSA_GREETBY

13 eSA_THANKS

14 eSA_DENIALS

15 eSA_THREAT

16 eSA_COMPLAINS

17 eSA_INCRED

18 eSA_ADVICE

19 eSA_CHALLENGE

20 eSA_MISUNDER

21 eSA_DRINKS

22 eSA_OFFENSIVE

23 eSA_DISAGREEACT

24 eSA_GUNDROPING

25 eSA_HANDSOHEADS

26 eSA_MOVOUT

27 eSA_AGREEACT

28 eSA_COMPLIMENT

29 eSA_DISAGREEANS

30 eSA_ROMANCE

31 };

32

...

71

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 72

68

69 enum E_Denials {

70 eDeKnow

71 eDeTell

72 eDeThink

73 eDeBus

74 eDeJok

75 eDeConf

76 eDeWaste

77 eDeNever

78 eDeSer

79 };

...

81 enum E_Threats {

82 eThreatDie

83 eThreatmnow

84 eThreatKill

85 eThreatWitt

86 eThreatPick

87 eThreatFight

88 eThreatNow

89 eThreatWeap

90 eThreatAtt

91 eThreatBus

92 eThreatHell

93 eThreatWait

94 eThreatChoice

95 eThreatWin

96 eThreatLast

97 eThreatMatter

98 };

99

...

184

185 template tDenialsProp = "i_know"

eDeKnow [] +
186 "i_know_that"

eDeKnow [] +
187 "i_give_you_such_information"

eDeInf [] +
188 "you_like_to_know"

eDeKnow [] +
189 "you_care"

eDeKnow [] +
190 "you_interested"

eDeKnow [] ;
191

192

193 template tDenialsEnd = "tell"

eDeTell [] +
194 "tell_you"

eDeTell [] +
195 "know"

eDeTell [] +
196 "seriously_think"

eDeThink [] ;
197

198 template tDenialsing = "telling_you_this"

eDeTell [] +
199 "talking_to_you"

eDeTell [] +

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 73

200 "wasting_your_time"

eDeWaste [] +
201 "wasting_my_time"

eDeWaste [] +
202 "you_talking_about"

eDeTell [] ;
203

204 template tDenialsExpr = "no_business_of_yours"

eDeBus [] +
205 "none_of_your_business"

eDeBus [] +
206 "your_business"

eDeBus [] +
207 "serious"

eDeSer [] +
208 "joking"

eDeJok [] +
209 "able_to_know_that"

eDeKnow [] +
210 "need_to_know_that"

eDeKnow [] +
211 "need_to_know"

eDeKnow [] +
212 "want_to_know_that"

eDeKnow [] +
213 "want_to_know"

eDeKnow [] +
214 "confidential"

eDeConf [] +
215 "never_heard_of_it"

eDeNever [] ;
216

...

217 /*

218 * Threats (7)

219 */

220

221 template tThreatsMid1 = "gonna_die"

eThreatDie [] +
222 "mine_now"

eThreatmnow [] +
223 "you_now"

eThreatmnow [] ;
224

225 template tThreatsStart1 = "i_expect_you_to_die"

eThreatDie [] +
226 "you_just_be_a_good_boy_and_die"

eThreatDie [] +
227 "supposed_to_die_for_me"

eThreatDie [] +
228 "try_to_kill_me"

eThreatKill [] +
229 "

choose_you_next_witticism_carefully" eThreatWitt [] +
230 "go_and_pick_it_up"

eThreatPick [] ;
231

232

233 template tThreatsFight = "to_fight"

eThreatFight [] +
234 "lets_fight"

eThreatFight [] ;
235

236 template tThreatsNow = "right_now"

eThreatNow [] ;
237

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 74

238 template tThreatsWeap = "golden_gun"

eThreatWeap [] +
239 "walther_ppk"

eThreatWeap [] ;
240

241 template tThreatsExpr = "you_only_live_twice"

eThreatLive [] +
242 "attack_me_with_everything"

eThreatAtt [] +
243 "unfinished_business"

eThreatBus [] +
244 "you_want_to_kill_me"

eThreatKill [] +
245 "kill_you"

eThreatKill [] +
246 "see_you_in_hell"

eThreatHell [] +
247 "you_waiting_for"

eThreatWait [] +
248 "win"

eThreatWin [] +
249 "no_choice"

eThreatChoice [] +
250 "it_may_be_your_last"

eThreatLast [] ;
251

252 template tThreatsquest = "the_matter"

eThreatMatter [] +
253 "your_choice"

eThreatChoice [] ;
254

255

256

257

...

280 /*

281 * Elements not recognized as speech acts

282 */

283

284 template tbegGeneBe = "you_are" eNone []

+

285 "it_is" eNone []

+

286 "i_am" eNone []

+

287 "youre" eNone []

+

288 "this_is" eNone []

+

289 "you_were" eNone []

;
290

291 template tbegGeneOwn = "i_have" eNone [] +

292 "you_have" eNone [];

293

294 template tbegGeneiw = "i_would" eNone [] +

295 "i_will" eNone [];

296

297

298

299 template tbegNeg = "i_am_not" eNone [] +

300 "i_could_not" eNone [] +

301 "i_would_not" eNone [] +

302 "it_is_not" eNone [] +

303 "this_is_not" eNone [] +

304 "you_are_not" eNone [] +

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 75

305 "i_wont" eNone [] +

306 "i_will_not" eNone [] +

307 "i_dont" eNone [] +

308 "you_dont" eNone [] +

309 "i_cant" eNone [] ;

310

311 tbegGeneTh= "thing_is" eNone []

;
312

313 template tstartQuestw = "why_would" eNone []

+

314 "why_do" eNone []

+

315 "why_are" eNone []

+

316 "why_cant" eNone []

+

317 "what_is" eNone []

+

318 "what_are" eNone []

+

319 "whats" eNone []

+

320 "how_would" eNone []

+

321 "whats" eNone []

;
322

323 template tstartQuesta = "are_you"

eNone [] +

324 "do_you" eNone []

;
325

H.2 Sentences Examples : Threats and De-

nials

...

160 /*

161 * Threats

162 */

163

164 // you re gonna die ok

165 sentence s0025 =

166 eSA_THREAT

167 [tbegGeneBe tThreatsMid1]

168 [^tThreatsMid1];

169 // you re gonna die James ok

170 sentence s0026 =

171 eSA_THREAT

172 [tbegGeneBe tThreatsMid1 tActor]

173 [^tThreatsMid1 ^tActor];

174

175 // you are mine now ok

176 sentence s0027 =

177 eSA_THREAT

178 [tbegGeneBe tThreatsMid1]

179 [^tbegGeneBe ^tThreatsMid1];

180

181

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 76

182 // Ihave you now ok

183 sentence s0028 =

184 eSA_THREAT

185 [tbegGeneOwn tThreatsMid1]

186 [^tbegGeneOwn ^tThreatsMid1];

187

188

189 //Mr Bond I expect you to die ok

190 sentence s0029 =

191 eSA_THREAT

192 [tActor tThreatsStart1]

193 [^tActor ^tThreatsStart1];

194

195

196 // Why cant you just be a good boy and die? ok

197 sentence s0030 =

198 eSA_THREAT

199 [tstartQuestw tThreatsStart1]

200 [^tstartQuestw ^tThreatsStart1];

201

202

203 // you were supposed to die for me ok

204 sentence s0031 =

205 eSA_THREAT

206 [tbegGeneBe tThreatsStart1]

207 [^tbegGeneBe ^tThreatsStart1];

208

209

210 // Thing is james right now you have to fight **

211 // sentence s0032 =

212 // eSA_THREAT

213 // [tbegGeneTh tActor tThreatsNow tbegGeneOwn tThreatsFight]

214 // [^ tbegGeneTh ^tActor ^ tThreatsNow ^ tbegGeneOwn ^ tThreatsFight

];
215

216

217 // let s fight ok

218 sentence s0033 =

219 eSA_THREAT

220 [tThreatsFight]

221 [^tThreatsFight];

222

223 // Choose you next witticism carefully Mr Bond , it may be your last ***

224 sentence s0034 =

225 eSA_THREAT

226 [tThreatsStart1 tActor tThreatsExpr]

227 [^tThreatsStart1 ^tActor ^tThreatsExpr];

228

229

230 // You only live twice Mr Bond ok

231 sentence s0035 =

232 eSA_THREAT

233 [tThreatsExpr tActor]

234 [^tThreatsExpr ^tActor];

235

236

237

238 //My golden gun against your Walther PPK.ok

239 sentence s0036 =

240 eSA_THREAT

241 ["my" tThreatsWeap "against" "your" tThreatsWeap]

242 [^tThreatsWeap];

243

244

245

246 // Attack me With everything you have ok

247 sentence s0037 =

248 eSA_THREAT

249 [tThreatsExpr tbegGeneOwn]

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 77

250 [^tThreatsExpr ^tbegGeneOwn];

251

252 // You and I have unfinished business ok

253 sentence s0038 =

254 eSA_THREAT

255 ["you_and" tbegGeneOwn tThreatsExpr]

256 [^tThreatsExpr ^tbegGeneOwn];

257

258 //u want to kill me bond ok

259 sentence s0039 =

260 eSA_THREAT

261 [tThreatsExpr tActor]

262 [^tThreatsExpr ^tActor];

263

264 //I m gonna Kill you ok

265 sentence s0040 =

266 eSA_THREAT

267 [tbegGeneBe "gonna" tThreatsExpr]

268 [^tbegGeneBe ^tThreatsExpr];

269

270 //I will kill you ok

271 sentence s0041 =

272 eSA_THREAT

273 [tbegGeneiw tThreatsExpr]

274 [^tbegGeneiw ^tThreatsExpr];

275

276 // what s the matter james // what s your choice james ok

277 sentence s0042 =

278 eSA_THREAT

279 [tstartQuestw tThreatsquest tActor]

280 [^tstartQuestw ^tThreatsquest ^tActor];

281

282 // You have no choice ok

283 sentence s0044 =

284 eSA_THREAT

285 [tbegGeneOwn tThreatsExpr]

286 [^tbegGeneOwn ^tThreatsExpr];

287

288

289 // See you in hell james ok

290 sentence s0045 =

291 eSA_THREAT

292 [tThreatsExpr tActor]

293 [^tThreatsExpr ^tActor];

294

295 // See you in hell ok

296 sentence s1045 =

297 eSA_THREAT

298 [tThreatsExpr]

299 [^tThreatsExpr];

300

301

302 // You cant win ****

303 sentence s0046 =

304 eSA_THREAT

305 [tbegNeg tThreatsExpr]

306 [^tbegNeg ^tThreatsExpr];

307

308

309 // try to kill me //go and pick it up ok

310 sentence s0047 =

311 eSA_THREAT

312 [tThreatsStart1]

313 [^tThreatsStart1];

314

315

316

317 // What are you waiting for? ok

318 sentence s0049 =

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 78

319 eSA_THREAT

320 [tstartQuestw tThreatsExpr]

321 [^tstartQuestw ^tThreatsExpr];

322

...

392 /*

393 *Denials

394 */

395

396 // How would I know Mr Bond ok

397 // Why would I give you such information ok

398 sentence s0061 =

399 eSA_DENIALS

400 [tstartQuestw tDenialsProp tActor]

401 [^tstartQuestw ^tDenialsProp ^tActor];

402

403 //I could not tell you //I would not know ok

404 sentence s0062 =

405 eSA_DENIALS

406 [tbegNeg tDenialsEnd]

407 [^tbegNeg ^tDenialsEnd];

408

409

410

411 // Never heard of it *****

412 sentence s0064 =

413 eSA_DENIALS

414 [tDenialsExpr]

415 [^tDenialsExpr];

416

417 //Do you seriously think i would tell you ok

418 sentence s0065 =

419 eSA_DENIALS

420 [tstartQuesta tDenialsEnd tbegGeneiw tDenialsEnd]

421 [^tstartQuesta ^tDenialsEnd ^tbegGeneiw ^tDenialsEnd];

422

423 //I am not telling you this ok

424 //I am not talking to you

425 sentence s0066 =

426 eSA_DENIALS

427 [tbegNeg tDenialsing]

428 [^tbegNeg ^tDenialsing];

429 //I am not talking to you , Mr Bond

430 sentence s0068 =

431 eSA_DENIALS

432 [tbegNeg tDenialsing tActor]

433 [^tbegNeg ^tDenialsing ^tActor];

434

435 // Why would I tell you ok

436 sentence s0067 =

437 eSA_DENIALS

438 [tstartQuestw "i" tDenialsEnd]

439 [^tstartQuestw ^tDenialsEnd];

440

441

442

443 // This is no business of yours // This is none of your business ok

444 sentence s0070 =

445 eSA_DENIALS

446 [tbegGeneBe tDenialsExpr]

447 [^tbegGeneBe ^tDenialsExpr];

448

449

450 //It is not your buisiness // This is not ur buisiness ok

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 79

451 sentence s0072 =

452 eSA_DENIALS

453 [tbegNeg tDenialsExpr]

454 [^tbegNeg ^tDenialsExpr];

455

456 // You ’re wasting // your time ok

457 sentence s0075 =

458 eSA_DENIALS

459 [tbegGeneBe tDenialsing]

460 [^tbegGeneBe ^tDenialsing];

461

462

463 // You are not serious * // You don ’t want to know *

464 // You are not able to know that ok

465 sentence s0078 =

466 eSA_DENIALS

467 [tbegNeg tDenialsExpr]

468 [^tbegNeg ^tDenialsExpr];

469

470 // You are joking //it is confidential ok

471 sentence s0079 =

472 eSA_DENIALS

473 [tbegGeneBe tDenialsExpr]

474 [^tbegGeneBe ^tDenialsExpr];

475

476 // You must be joking ok

477 sentence s0080 =

478 eSA_DENIALS

479 ["you" "must" "be" tDenialsExpr]

480 [^tDenialsExpr];

481

482 // Are you serious , Mr Bond ***

483 sentence s0081 =

484 eSA_DENIALS

485 [tstartQuesta tDenialsExpr tActor]

486 [^tstartQuesta ^tDenialsExpr ^tActor];

487

488 // Why would you like to know ok

489 sentence s0082 =

490 eSA_DENIALS

491 [tstartQuestw tDenialsProp]

492 [^tstartQuestw ^tDenialsProp];

493

494 // Why do you care , Mr Bond ok

495 sentence s0083 =

496 eSA_DENIALS

497 [tstartQuestw tDenialsProp tActor]

498 [^tstartQuestw ^tDenialsProp ^tActor];

499

500 // Why are you interested ok

501 sentence s0084 =

502 eSA_DENIALS

503 [tstartQuestw tDenialsProp]

504 [^tstartQuestw ^tDenialsProp];

505

506 // Why do you want to know ****

507 sentence s0085 =

508 eSA_DENIALS

509 [tstartQuestw tDenialsExpr]

510 [^tstartQuestw ^tDenialsExpr];

511

512 //I won t tell you bond ok//I can t tell youok

513 // You don t need to know that ok

514 sentence s0086 =

515 eSA_DENIALS

516 [tbegNeg tDenialsEnd tActor]

517 [^tbegNeg ^tDenialsEnd ^tActor];

518

519 // sentence s0086 =

APPENDIX H. TEMPLATES SOURCE CODE EXCERPT 80

520 // eSA_DENIALS

521 // [tbegNeg tDenialsEnd]

522 // [^tbegNeg ^ tDenialsEnd];

523

524

525

526 // what are u talkin about ok

527 sentence s0091 =

528 eSA_DENIALS

529 [tstartQuestw tDenialsing]

530 [^tstartQuestw ^tDenialsing];

531

...

Appendix I

Templates definition charts

81

APPENDIX I. TEMPLATES DEFINITION CHARTS 82

Figure I.1: Agreements, Actor and Introduction Templates Definion Chart

APPENDIX I. TEMPLATES DEFINITION CHARTS 83

Figure I.2: Denials and Greetings Templates Definion Chart

APPENDIX I. TEMPLATES DEFINITION CHARTS 84

Figure I.3: Threats and Challenge Templates Definion Chart

APPENDIX I. TEMPLATES DEFINITION CHARTS 85

Figure I.4: Disagreement Answers and Sentences Templates Definion Chart

Appendix J

Talk to unreal application

screenshot

86

APPENDIX J. TALK TO UNREAL APPLICATION SCREENSHOT 87

Figure J.1: Talk to unreal application screenshot

